Abstract

As-electrospun microfiber mats comprising atactic polystyrene (aPS), a low-cost commodity polymer, have demonstrated beneficial electromechanical properties. However, the variability of the electromechanical properties of fiber mats produced using different electrospinning conditions has not been investigated. Therefore, herein, the direct electromechanical properties of aPS fiber mats produced using different deposition times (tdep) and electrospinning voltages (VES) are investigated. The resulting apparent piezoelectric d constant (dapp) of the fiber mats demonstrates a specific peak value for tdep as high as ~1600 pC N−1 under 1-kPa pressure application after ~0.2-kPa pre-pressure application, although the dapp of the fiber mats produced with some conditions is nearly zero pC·N−1. Furthermore, the peak position of dapp with tdep is fundamentally determined with σEff0/YD(h-hpre) [σEff0: effective surface charge density, YD(h-hpre): secant modulus of elasticity]. Charge distribution models for fiber mats with different tdep are established. The models explain the characteristics of the significant changes in YD(h-hpre) and σEff0 with tdep. These findings provide significant directions for the production of fiber mats with improved direct electromechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.