Abstract

In areas of highly pulsatile and turbulent flow, real-time imaging with high temporal, spatial, and velocity resolution is essential. The use of 1D Fourier velocity encoding (FVE) was previously demonstrated for velocity measurement in real time, with fewer effects resulting from off-resonance. The application of variable-density sampling is proposed to improve velocity measurement without a significant increase in readout time or the addition of aliasing artifacts. Two sequence comparisons are presented to improve velocity resolution or increase the velocity field of view (FOV) to unambiguously measure velocities up to 5 m/s without aliasing. The results from a tube flow phantom, a stenosis phantom, and healthy volunteers are presented, along with a comparison of measurements using Doppler ultrasound (US). The studies confirm that variable-density acquisition of kz-kv space improves the velocity resolution and FOV of such data, with the greatest impact on the improvement of FOV to include velocities in stenotic ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.