Abstract

This article presents a multi-degree-of-freedom variable damping controller to manage the trade-off between stability and agility and to reduce user effort in physical human-robot interaction. The controller accounts for the human body's inherent impedance properties and applies a range of robotic damping from negative (energy injection) to positive (energy dissipation) values based on the user's intent of motion. To evaluate the effectiveness of the proposed controller in balancing the trade-off between stability/agility and reducing user effort, two studies are performed on both the human upper-extremity and lower-extremity to represent both industrial and rehabilitation applications of the proposed controller. These studies required subjects to perform a series of multidimensional target reaching tasks while the human user interacted with either the end-effector of a robotic arm for the upper-extremity study or a wearable ankle robot for the lower-extremity study. Stability, agility, and user effort are quantified by a variety of performance metrics. Stability is quantified by both overshoot and stabilization time. Mean and maximum speed are used to quantify agility. To quantify the user effort, both overall and maximum muscle activation, and mean and maximum root-mean-squared interaction force are calculated. The results of both the upper- and lower-extremity studies demonstrate that the controller is able to reduce user effort while increasing agility at a negligible cost to stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.