Abstract

The dimeric β-diketiminato calcium hydride, [(Dipp BDI)CaH]2 (Dipp BDI = HC{(Me)CN-2,6-i-Pr2 C6 H3 }2 ), reacts with ortho-, meta- or para-tolyl mercuric compounds to afford hydridoarylcalcium compounds, [(Dipp BDI)2 Ca2 (μ-H)(μ-o-,m-,p-tolyl)], in which dimer propagation occurs either via μ2 -η1 -η1 or μ2 -η1 -η6 bridging between the calcium centers. In each case, the orientation and hapticity of the aryl units is dependent upon the position of the methyl substituent. While wholly organometallic meta- and para-tolyl dimers, [(Dipp BDI)Ca(m-tolyl)]2 and [(Dipp BDI)Ca(p-tolyl)]2 , can be prepared and are stable, the ortho-tolyl isomer is prone to isomerization to a calcium benzyl analog. Computational analysis of this latter process with density functional theory (DFT) highlights an unusual mechanism invoking the generation of an intermediate dicalcium species in which the group 2 centers are bridged by a toluene dianion formed by the formal attachment of the original hydride anion to the initially generated ortho-tolyl substituent. Use of a more sterically encumbered aryl substituent, {3,5-t-Bu2 C6 H3 }, facilitates the selective formation of [(Dipp BDI)Ca(μ-H)(μ-3,5-t-Bu2 C6 H3 )Ca(Dipp BDI)], which can be converted into the unsymmetrically-substituted σ-aryl calcium complexes, [(Dipp BDI)Ca(μ-Ph)(μ-3,5-t-Bu2 C6 H3 )Ca(Dipp BDI)] and [(Dipp BDI)Ca(μ-p-tolyl)(μ-3,5-t-Bu2 C6 H3 )Ca(Dipp BDI)] by reaction with the appropriate mercuric diaryl. Conversion of [(Dipp BDI)Ca(H)(Ph)Ca(Dipp BDI)] to afford [{{(Dipp BDI)Ca}2 (μ2 -Cl)}2 (C6 H5 -C6 H5 )], comprising a biphenyl dianion, is also reported. Although this latter transformation is serendipitous, AIM analysis highlights that, in a related manner to the ortho-tolyl to benzyl isomerization, the requisite C-C coupling may be facilitated in an "across dimer" fashion by the experimentally-observed polyhapto engagement of the aryl substituents with each calcium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.