Abstract

Pointing errors (PE) during free space optical (FSO) transmission can be caused by laser beam wander due to thermal and wind dynamic instability. The aim of this work is to study the coupled effects of temperature and wind speed on PE using matrix Rician pointing error (MRPE) model; then show how variable antennas height can reduce PE due to wind speed and temperature coupled effects. To achieve this purposes, average PE expression was established using MRPE model. Then considering a Gaussian beam wave and Monin–Obukhov similarity functions for the structure parameters of temperature, explicit relationship was established between average PE, temperature and wind speed. It comes out of this study that under dynamic turbulence, one can appropriately modify temperature to reduce PE due to dynamic instability and reciprocally. Depending on turbulence large cells or frozen turbulence eddies distribution, PE can be reduced by appropriately modified antennas height or the distance between transmitter and receiver. That is why this work suggests to install variable or dynamic antennas (rather than fixed ones) which could intelligently modify its positions according to laser beam wander created by atmospheric turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.