Abstract

Conventional air-assisted sprayers with hydraulic nozzles generate large radial spray plumes which produce significant off-target losses and can consume high power (20–30 kW). Also, it is not uncommon to see these machines treating dwarf orchards, where the spray losses at the full leaf stage may be over 80% of applied spray volume. Significant reductions in spray losses can be obtained with targeted and wind-oriented airflow adjustment. The objectives of the presented studies were to develop an energy saving variable air assistance (VAA) system with continuous real-time adjustment of air volume and with spraying systems mounted on both sides of the sprayer. The system is based on a double axial fan system which allows for remote adjustment of air volume. The nominal air output was 20,000 m3 h−1, for use in typical dwarf and semi-dwarf orchards, and this was designed to be obtained with 10 kW power consumption. The system used variable speed impellers with fixed blades which showed greater suitability than a method with adjustable pitch blades working at constant speed because it provided a wider range of air volumes (±35%). The air volumes produced could be continuously adjusted to obtain airflow profiles, on both sides of the sprayer that were almost symmetrical. The results obtained in tests appear to meet the objectives and, therefore, the VAA system can be considered as a suitable prototype platform for variable rate technology and future intelligent orchard sprayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.