Abstract

Intuitive and comfortable physical human–robot interaction (pHRI) can be realized by changing impedance/admittance parameters corresponding to human interaction. However, this dynamic adjustment may result in drastically changed system dynamics, which usually give rise to system instability. We introduce a power envelope regulation strategy designed to constrain the variability of admittance parameters, thereby ensuring system passivity and mitigating the risk of instability. Then, sliding mode control (SMC) is employed to yield stable and robust performance. A new sliding surface is proposed based on feedback linearization, which shows improved tracking performance and stability compared to a conventional sliding surface. The effectiveness of the proposed sliding surface and associated control is theoretically validated. Notably, our modified sliding surface works universally, regardless of the order of the desired admittance equation. The trade-off between system chattering and robustness is effectively managed using a variable–boundary approach, which dynamically adjusts system constraints to optimize performance. In addition, a control algorithm combining acceleration feedback and sliding mode is proposed, showing improved robustness and tracking accuracy performance compared with applying the proposed SMC algorithm exclusively. The efficacy of these methodologies is substantiated through numerical simulations and empirical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call