Abstract

The computation of apparent material properties for a random heterogeneous material requires the assumption of a solution field on a finite domain over which the apparent properties are to be computed. In this paper the assumed solution field is taken to be that defined by the shape functions that underpin the finite element method and it is shown that the variance of the apparent properties calculated using the shape functions to define the solution field can be expressed in terms of a variability response function (VRF) that is independent of the marginal distribution and spectral density function of the underlying random heterogeneous material property field. The variance of apparent material properties can be an important consideration in problems where the domain over which the apparent properties are computed is smaller than the representative volume element and the approach introduced here provides an efficient means of calculating that variance and performing sensitivity studies with respect to the characteristics of the material property field. The approach is illustrated using examples involving heat transfer problems and finite elements with linear and nonlinear shape functions and in one and two dimensions. Features of the VRF are described, including dependency on shape and scale of the finite element and the order of the shape functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.