Abstract

Carbon nanotubes are widely used as material reinforcement in diverse fields of engineering. Being that their contribution is significant to improving the mean properties of the resulting materials, it is important to assess the influence of the variability on carbon nanotubes’ material and geometrical properties to structures’ responses. This work considers functionally graded plates constituted by an aluminum continuous phase reinforced with single-walled or multi-walled carbon. The nanotubes' weight fraction evolution through the thickness is responsible for the plates’ functional gradient. The plates’ samples are simulated considering that only the nanotubes’ material and geometrical characteristics are affected by uncertainty. The results obtained from the multiple regression models developed allow us to conclude that the length of the nanotubes has no impact on the maximum transverse displacement of the plates in opposition to the carbon nanotubes’ weight fraction evolution, their internal and external diameters, and the Young’s modulus. The multiple regression models developed can be used as alternative prediction tools within the domain of the study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.