Abstract

The Pearl River Delta (PRD) is a complicated criss-cross river network. The booming economy and intensifying human activity have greatly altered the natural water levels, which threatens regional sustainable development. The Mann-Kendall trend test and the kriging interpolation method were used to detect the spatial and temporal patterns in the trends of extreme high/low water levels related to different magnitudes of streamflow, in order to explore the impacts of hydrological processes on the water-level changes throughout the PRD. The results indicate that: (a) streamflow changes at the Sanshui and Makou stations exhibit different characteristics. No significant trend can be identified in the streamflow changes at Makou station; however, the streamflow at Sanshui station shows a significant increasing trend, especially in low-flow periods. The decreasing Makou/Sanshui streamflow ratio exerts tremendous impacts on the water-level changes in the hinterland of the PRD region. (b) Extreme high/low water levels exhibit similar changing patterns. The extreme high/low water levels in the high/normal flow periods are decreasing in both the upper PRD and the hinterland of the PRD region. Increasing extreme high/low water levels in low-flow periods can be identified in the hinterland of the PRD region. The coastal regions are characterized by increasing extreme high/low water levels. (c) Extreme high/low water levels for high/normal flow periods in the hinterland of the PRD are heavily impacted by topographic changes due to in-channel dredging. Increasing extreme high/low water levels along the coastal regions are mainly backwater effects caused by serious siltation and rising sea level. This study has scientific and practical merits in regional fluvial management and mitigation of natural hazards. Citation Zhang, Q., Xu, C.-Y. & Chen, Y. D. (2010) Variability of water levels and impacts from streamflow changes and human activity within the Pearl River Delta, China. Hydrol. Sci. J. 55(4), 512–525.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call