Abstract
The variability in the southwest Indian Ocean is connected to the basin-scale and global-scale ocean circulation. Two bands of enhanced variability stretch across the Southern Indian Ocean east of Madagascar around 12 degrees S and 25 degrees S, respectively. They mark the preferred routes along which anomalies, generated by varying forcing over the central basin, near the eastern boundary or in the equatorial region, propagate westward as baroclinic Rossby waves. Sea-surface height anomalies pass along the northern tip of Madagascar and are observed by satellite altimetry to propagate into the central Mozambique Channel. There, eddies are subsequently formed that propagate southward into the Agulhas retroflection region. The anomalies along the southern band trigger the formation of large dipolar vortex pairs in the separation region of the East Madagascar Current at the southern tip of the island. South of Africa these eddies and dipoles trigger the shedding of Agulhas Rings that feed the Atlantic meridional overturning circulation with warm, salty, Indian Ocean water. Interannual variability of the forcing over the Indian Ocean, such as that associated with the Indian Ocean Dipole/El Nino climate modes, propagates along these pathways and leads to associated modulations of the eddy transports into the South Atlantic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.