Abstract

The monitoring of rainfall variability over recent decades has become a necessity due to its devastating effects such as floods and droughts, which render humans vulnerable across different parts of the West African region. The current study seeks to provide a good understanding of variability within the minor rainfall season over southern Ghana by employing statistical tools to quantify variability in rainfall. Daily rainfall data from 1981 to 2018 for seventeen (17) synoptic weather stations across southern Ghana are used for this analysis. We perform trend and descriptive statistics of rainfall amount and extreme indices intending to identify the areas with the greatest variability in rainfall. Further, for five recent years (2014–2018), we do an interpolation of the ground station rainfall data and compute anomalies. We find increasing trends of rainfall in the minor rainy season for 16 out of the 17 stations, with rainfall increasing between 0.10 mm and 4.30 mm each season. For extreme rainfall indices, the 17 stations show nonsignificant trends of very wet and extremely wet days. We also find that the middle parts of Ghana have the highest rainfall amounts (262.7 mm/season–400.2 mm/season), while the East Coast has the lowest (125.2 mm/season–181.8 mm/season). Over the whole of southern Ghana, we find high variability in rainfall amount with the coefficient of variations (CV) between 25.3% and 70.8% and moderate to high variability in rainfall frequency (CV = 14.0%–48.8%). The results of rainfall anomalies show that the middle parts had an above-normal rainfall amount. In the same period, the transition areas experienced below-normal rainfall. Our finding of high variability in the minor rainfall season has implications for agricultural productivity in Ghana and countries in the West African region, which rely heavily on rain-fed agriculture. Hence, this study recommends more research to understand the causes of variability in the West African monsoon and how this will change in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.