Abstract

Phosphorus (P) in lake sediments is stored within diverse forms, often associated with metals, minerals, and organic matter. Sediment P can be remobilized to the water column, but the environmental conditions influencing the P retention-release balance depend upon the sediment chemistry and forms of P present. Sequential fractionation approaches can be used to help understand forms of P present in the sediments, and their vulnerability to release. We assessed P composition in surficial sediments (as an assemblage of six P-fractions) and its relationship with watershed, and lake-specific explanatory variables from 236 lakes across Canada. Sediment P composition varied widely across the 12 sampled Canadian ecozones. The dominant P-fractions were the residual-P and the labile organic P, while the loosely bound P corresponded to the smallest proportion of sediment TP. Notable contrasts in sediment P composition were apparent across select regions – with the most significant differences between sediment P in lakes from the mid-West Canada region (Prairies and Boreal Plains ecozones) and both Eastern coastal (Atlantic Maritime and Atlantic Highlands) and Western coastal (Pacific Maritime) ecozones. The ecozone attributes most critical to sediment P speciation across Canadian lakes were related to soil types in the watershed (e.g., podzols, chernozems, and Luvisols) and the chemical composition of lake water and sediments, such as dissolved Ca in lake water, bulk sedimentary Ca, Al, and Fe, dissolved SO4 in lake water, lake pH, and salinity. Understanding predictors of the forms of P stored in surficial sediments helps advance our knowledge of in-lake P retention and remobilization processes across the millions of unstudied lakes and can help our understanding of controls on internal P loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.