Abstract
Using two field cruise observations collected during September and December 2016 in the Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS), our study explores the variability of the particulate backscattering ratio (i.e., a ratio of particulate backscattering, bbp in m-1, to particulate scattering, bp in m-1, denoted as b˜bp, dimensionless). A large variation of b˜bp (using 550 nm as a delegate) in magnitude is observed in the study regions, ranging from 0.0004 to 0.043 (with an average of 0.015 ± 0.0082), which implies optically complex water conditions. Spectral variation in b˜bp is analyzed quantitatively by our proposed so-called "spectral dependence index," K, recommended as a standard way to determine quantitatively the spectral dependence of b˜bp in water bodies worldwide. The driving mechanism on the b˜bp variability in the study regions is researched for the first time, based on those synchronous data on particle intrinsic attributes, herein mainly referring to particle concentration (TSM, for the content of total suspended matter), composition (using a ratio of Chla/TSM as a surrogate, where Chla refers to the content of chlorophyll a), mean particle size (DA), and mean apparent density (ρa). The TSM, Chla/TSM, and DA cumulatively contribute most (97.8%) of the b˜bp variability, while other factors, such as the ρa, show a weak influence (0.04%). Meanwhile, we model b˜bp with direct linkages to TSM, Chla/TSM, and DA by using a linear regression method, with low estimation errors (such as mean absolute percentage error, MAPE, of about 14%). In short, our findings promote an understanding on the essence of the b˜bp in the BS, YS, and ECS, and are significantly beneficial to the comprehensive grasp of those complex features on suspended particles and those related to biogeochemical processes in marine waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.