Abstract

Non-tuberculous mycobacteria are widely distributed in environments and are capable of infecting humans, particularly those with a compromised immune system. The most prevalent species that cause nontuberculous mycobacterial lung diseases are slow-growing bacteria from the Mycobacterium avium complex (MAC), mainly M. avium or M. intracellulare. The key treatment of MAC infections includes macrolides, ethambutol, and rifampicin; however, the therapy outcomes are unsatisfactory. Phenotypic drug susceptibility testing is a conditional recommendation prior to treatment, and critical concentrations for clarithromycin, amikacin, moxifloxacin, and linezolid have been established. In this review, data from studies on the determination of MIC of clinical isolates using the broth microdilution method were summarized. A significant variation in the MIC distributions from different studies was found. The main reasons could impact the findings: insufficient reproducibility of the phenotypic testing and variation in species lineages identified in different laboratories, which could have various intrinsic susceptibility to drugs. For most of the drugs analyzed, the MICs are too high, which could undermine the treatment efficiency. Further improvement of treatment outcomes demands the validation of microbiological resistance criteria together with the identification of molecular mechanisms of resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.