Abstract

In the present work, characteristics of 30–50 day oscillations (referred to as the MJO) in tropospheric and lower stratospheric wind and temperature have been studied using long-term high resolution radiosonde observations at a tropical station, Gadanki (13.5°N, 79.2°E) for the period 2006–2012. Wind and temperature perturbations showed clear features of the MJO with higher amplitudes between 10 and 18km altitude. Interestingly, the MJO signal is confined vertically to different altitudes in different seasons. Variability in the perturbations of wind and temperature similar to that of outgoing long-wave radiation (OLR) with a few cases showing an out of phase relation. The amplitudes of these oscillations are larger in the winter and pre-monsoon seasons than in the monsoon season where the largest amplitudes are confined below the Tropical Easterly Jet (~16km). There also exists a large inter-annual variability in the MJO. Spatio-temporal variability of OLR not only showed the features of the MJO but also northward and eastward propagation in the monsoons and winter seasons, respectively, in a few cases. It is found that convection leads the MJO in the zonal wind by 8–12 days in all the seasons except in winter. One intriguing result observed is the vitiation of the MJO pattern by the presence of strong wind shears during monsoon season. We expect this study would be helpful in representing the MJO features in the vertical in the general circulation models (GCMs) which is still a major challenge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.