Abstract
Dose-calculation algorithms are critical for radiation treatment outcomes that vary among treatment planning systems (TPS). Modern algorithms use sophisticated radiation transport calculation with detailed three-dimensional beam modeling to provide accurate doses, especially in heterogeneous medium and small fields used in IMRT/SBRT. While the dosimetric accuracy in heterogeneous mediums (lung) is qualitatively known, the accuracy is unknown. The aim of this work is to analyze the calculated dose in lung patients and compare the validity of dose-calculation algorithms by measurements in a low-Z phantom for two main classes of algorithms: type A (pencil beam) and type B (collapse cone). The CT scans with volumes (target and organs at risk, OARs) of a lung patient and a phantom build to replicate the human lung data were sent to nine institutions for planning. Doses at different depths and field sizes were measured in the phantom with and without inhomogeneity correction across multiple institutions to understand the impact of clinically used dose algorithms. Wide dosimetric variations were observed in target and OAR coverage in patient plans. The correction factor for collapsed cone algorithms was less than pencil beam algorithms in the small fields used in SBRT. The pencil beam showed ≈70% variations between measured and calculated correction factors for various field sizes and depths. For large field sizes the trends of both types of algorithms were similar. The differences in measured versus calculated dose for type-B algorithms were within ±10%. Significant variations in the target and OARs were observed among various TPS. The results suggest that the pencil beam algorithm does not provide an accurate dose and should not be considered with small fields (IMRT/SBRT). Type-B collapsed-cone algorithms provide better agreement with measurements, but still vary among various systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.