Abstract

This study examines the horizontal scale and spatial characteristics of island-induced ocean vortex trains (IOVTs) in the Kuroshio region southeast of Taiwan Island using European remote sensing satellite ERS-1 SAR imagery. US Aqua satellite Moderate Resolution Imaging Spectroradiometer (MODIS) data are used to analyze the sea surface temperature (SST) features of the study area. Seasonal composites of SST images show that the IOVTs are current-induced vortexes rather than wind-induced ones. Furthermore, using the HYbrid Coordinate Ocean Model/Navy Coupled Ocean Data Assimilation (HYCOM/NCODA) system that generated current and sea surface height anomaly data, the temporal and spatial variability of the Green Island IOVTs is analyzed. The variability of IOVTs within this region shows a distinct seasonality. This seasonal variability of IOVTs is closely associated with the shoreward shift of Kuroshio mainstream driven by the winter northeasterly monsoon. This scenario is verified by vector empirical orthogonal function analysis focused on the weak IOVT period in 2012. In addition to meandering of the Kuroshio, westward-propagating mesoscale eddies and the arrival of typhoons play an important role in modifying the variability of IOVTs at intraseasonal timescale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.