Abstract

Abstract Prominent interannual-to-decadal variations were observed in both heat content and mesoscale eddy activity in the southeast Indian Ocean (SEIO) during 1993–2020. The 2000–01 and 2008–14 periods stand out with increased 0–700-m ocean heat content (OHC) by ∼4.0 × 1021 J and enhanced surface eddy kinetic energy (EKE) by 12.5% over 85°–115°E, 35°–12°S. This study provides insights into the key dynamical processes conducive to these variations by analyzing observational datasets and high-resolution regional ocean model simulations. The strengthening of the Indonesian Throughflow (ITF) and anomalous cyclonic winds over the SEIO region during the two periods are demonstrated to be the most influential. While the ITF caused prevailing warming of the upper SEIO, the cyclonic winds cooled the South Equatorial Current and attenuated the warming in the subtropical SEIO by evoking upwelling Rossby waves. The EKE increase exerts significant influence on OHC only in the Leeuwin Current system. Dynamical instabilities of the Leeuwin Current give rise to high EKEs and westward eddy heat transport in climatology. As the Leeuwin Current was enhanced by both the ITF and local winds, the elevated EKEs drove anomalous heat convergence on its offshore flank. This process considerably contributes to the OHC increase in the subtropical SEIO and erases the wind-driven cooling during the two warm periods. This work highlights the vital role of eddies in regional heat redistribution, with implications for understanding time-varying ocean heat storage in a changing climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call