Abstract

Nowadays, physicochemical approach to understanding toxic effects remains underdeveloped. A proper development of such mode would be concerned with simplest bioassay systems. Coelenteramide-Containing Fluorescent Proteins (CLM-CFPs) can serve as proper tools for study primary physicochemical processes in organisms under external exposures. CLM-CFPs are products of bioluminescent reactions of marine coelenterates. As opposed to Green Fluorescent Proteins, the CLM-CFPs are not widely applied in biomedical research, and their potential as colored biomarkers is undervalued now. Coelenteramide, fluorophore of CLM-CFPs, is a photochemically active molecule; it acts as a proton donor in its electron-excited states, generating several forms of different fluorescent state energy and, hence, different fluorescence color, from violet to green. Contributions of the forms to the visible fluorescence depend on the coelenteramide microenvironment in proteins. Hence, CLM-CFPs can serve as fluorescence biomarkers with color differentiation to monitor results of destructive biomolecule exposures. The paper reviews experimental and theoretical studies of spectral-luminescent and photochemical properties of CLM-CFPs, as well as their variation under different exposures – chemicals, temperature, and ionizing radiation. Application of CLM-CFPs as toxicity bioassays of a new type is justified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.