Abstract
AbstractThe variability of winter extreme low‐temperature events and summer extreme high‐temperature events was investigated using daily temperature series (1901–98) from 11 sites in central and southern Europe. An extreme temperature event (EXTE) is defined by various threshold values of daily temperature or daily temperature anomaly. Systematic changes in the frequencies of EXTEs are investigated by the Mann–Kendall test and a method based on the Wilcoxon test. The catalogue of macrocirculation types over central Europe (the Hess–Brezowsky classification) is applied to investigate the connections between EXTEs and large‐scale circulation. Circulation classes (HBC) are defined, and mostly spatial averages of EXTEs are examined.There were large long‐term fluctuations in the frequencies of both winter extreme cold events (EXCEs) and summer extreme warm events (EXWEs) during the 20th century. The systematic changes referring to the entire period indicate a slight warming tendency, but only a few of the changes, mostly in the northernmost sites, are statistically significant. Strong connections are present between the frequencies of EXTEs and the large‐scale circulation on various time scales, particularly for EXCEs. The spatial differences of EXTE fluctuations and EXTE–HBC connections are small within the study area. Northerlies and easterlies, as well as meridional and anticyclonic situations, are favourable for EXCEs, whereas southerlies and persistent anticyclonic situations are favourable for EXWE occurrences. In the latest decades, a decline in the frequency of EXCEs and a sharp increase in the frequency of EXWEs happened, and the residence times of the circulation patterns over central Europe became longer both in winter and summer. Copyright © 2003 Royal Meteorological Society
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.