Abstract

Soil heterotrophic respiration (R h) represents an important component of the terrestrial carbon cycle that affects whether ecosystems function as carbon sources or sinks. Due to the complex interactions between biological and physical factors controlling microbial growth, R h is uncertain and difficult to predict, limiting our ability to anticipate future climate trajectories. Here we analyze the global FLUXNET 2015 database aided by a probabilistic model of microbial growth to examine the ecosystem-scale dynamics of R h and identify primary predictors of its variability. We find that the temporal variability in R h is consistently distributed according to a Gamma distribution, with shape and scale parameters controlled only by rainfall characteristics and vegetation productivity. This distribution originates from the propagation of fast hydrologic fluctuations on the slower biological dynamics of microbial growth and is independent of biome, soil type, and microbial physiology. This finding allows us to readily provide accurate estimates of the mean R h and its variance, as confirmed by a comparison with an independent global dataset. Our results suggest that future changes in rainfall regime and net primary productivity will significantly alter the dynamics of R h and the global carbon budget. In regions that are becoming wetter, R h may increase faster than net primary productivity, thereby reducing the carbon storage capacity of terrestrial ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call