Abstract

Summary In our intraseasonal variability studies of currents in the coastal sea of the Gulf of Finland northeast of Pakri Peninsula, we compared the observation data from a bottom-mounted ADCP (March–June of 2009, 50 m depth) with the simulation data from High Resolution Operational Model of the Baltic (HIROMB). The structure of the current pattern appeared strongly dependent on the stratification conditions. The flow was quasi-barotropic during the periods of weak inverse thermal stratification at the end of winter season and at transition from the inverse thermal stratification to summer type stratification when the sea was thermally unstratified, but mostly two-layered (baroclinic) when the summer type thermal stratification had developed. The alternation of strong westward (eastward) currents (up to 30 cm s−1) in the upper layer is explained in terms of coastal upwelling (downwelling) due to favourable background winds. The measured and the modelled upper layers along isobath currents showed a noticeable correlation with the correlation coefficient of 0.52 and 0.82 during the periods of winter type and summer type stratifications, respectively, and the absence of a significant correlation during the transition period. The eastward (upwind) current episodes with speeds reaching 18 cm s−1 below the seasonal thermocline are likely to reflect the specific circulation response in the elongated basin caused by the easterly wind. The long-term mean (over 3.5 months) current vector (−2.0 cm s−1, −2.9 cm s−1) was westward in the upper sea and eastward, nearly along isobaths (1.1 cm s−1, −0.3 cm s−1) in the deeper layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.