Abstract

The variability of the broad absorption lines is investigated for a broad absorption line (BAL) QSO, SDSS J022844.09+000217.0 (z = 2.719), with 18 SDSS/BOSS spectra covering 4128 days in the observed frame. With the ratio of the rms spectrum to the mean spectrum, the relative flux change of the BAL-trough is larger than that of the emission lines and the continuum. Fitting the power-law continuum and the emission line profiles of \civ $\lambda$1549 and \siiv$\lambda$1399, we calculate the equivalent width (EW) for different epochs, as well as the continuum luminosity and the spectral index. It is found that there is a strong correlation between the BAL-trough EW and the spectral index, and a weak negative correlation between the BAL-trough EW and the continuum luminosity. The strong correlation between the BAL-trough EW and the spectral index for this one QSO suggests that dust is intrinsic to outflows. The weak correlation between the BAL variability and the continuum luminosity for this one QSO implies that the BAL-trough variation is not dominated by photoionization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call