Abstract

Dimethylsulphide (DMS) is a climatically important component of global biogeochemical cycles, through its role in the sulphur cycle. Changes in ultraviolet radiation (UV) exhibit both positive and negative forcings on the dynamics of production and turnover of DMS and its precursor dimethylsulphoniopropionate (DMSP). In this study we investigate the net forcing of UV on atmospheric DMS. The work is based on a 10‐year record of observed DMS at Amsterdam Island in the southern Indian Ocean, and satellite‐based retrievals of surface UV and photosynthetically active radiation (PAR). The results show an inverse relationship between UV radiation and atmospheric DMS associated with extreme changes (defined as the greatest 5%) in daily UV, independent of changes in wind speed, sea surface temperature, and PAR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call