Abstract

As animals with complex life cycles metamorphose from one stage to the next, carry-over effects from earlier stages can affect future mortality. To examine the relationship between early life history traits and survival, seven monthly cohorts of newly-settled bluehead wrasse Thalassoma bifasciatum were collected immediately after settlement and over sequential 3-day periods. Otolith analysis was used to quantify mean larval and juvenile growth rates, pelagic larval duration (PLD), and settlement size and condition of different age classes to identify the traits most important for survival. Overall, survivors tended to have shorter PLDs, to settle at smaller sizes and higher condition levels, and to exhibit faster early juvenile growth. Water temperature contributed to among-cohort variability in traits as warmer water led to faster larval and juvenile growth and shorter PLDs. Trait-specific fitness functions demonstrated that temperature can influence fitness by changing the nature of selection on each trait. Estimates of selection intensity revealed that settlement condition contributed the most to variation in fitness across cohorts, followed by juvenile growth. Frequent loss of low settlement condition individuals and occasional loss of the very highest condition fish suggest that particularly high settlement condition during the warmest temperatures may be detrimental. Not only does the quality of settlers vary over time, but selective loss of individuals with particular phenotypic traits is not pervasive and can vary with environmental conditions such as temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call