Abstract
Plants protect against viruses through passive and active resistance mechanisms, and in most cases characterized thus far, natural recessive resistance to potyviruses has been mapped to mutations in the eukaryotic initiation factor eIF4E or eIF(iso)4E genes. Five eIF4E copies and three eIF(iso)4E copies were detected in Brassica rapa. The eIF4E and eIF(iso)4E genes could interact with turnip mosaic virus (TuMV) viral protein linked to the genome (VPg) to initiate virus translation. From the yeast two-hybrid system (Y2H) and bimolecular fluorescence complementation (BiFC) assays, the TuMV-CHN2/CHN3 VPgs could not interact with BraA.eIF4E.a/c or BraA.eIF(iso)4E.c, but they could interact with BraA.eIF(iso)4E.a in B. rapa. Further analysis indicated that the amino acid substitution L186F (nt T556C) in TuMV-UK1 VPg was important for the interaction networks between the TuMV VPg and eIF(iso)4E proteins. An interaction model of the BraA. eIF(iso)4E protein with TuMV VPg was constructed to infer the effect of the significant amino acids on the interaction of TuMV VPgs-eIF(iso)4Es, particularly whether the L186F in TuMV-UK1 VPg could change the structure of the TuMV-UK1 VPg protein, which may terminate the interaction of the BraA.eIF(iso)4E and TuMV VPg protein. This study provides new insights into the interactions between plant viruses and translation initiation factors to reveal the working of key amino acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.