Abstract
Depending on the solvothermal reaction conditions, we obtained three different metal‐organic frameworks with yttrium(III) as metal component and 2,5‐dihdyroxyterepthalic acid (H4dhtp) as bifunctional organic linker: Y2(H2dhtp)3(dmf)4·(dmf)2 (CPO‐29) contains dinuclear, paddle‐wheel like inorganic secondary building units (SBUs) connected by the organic linker to a network with α‐Po topology, while Y2(H2dhtp)(dhtp)(dmf)2 (CPO‐30) and Y2(H2dhtp)(dhtp)(dmf)2(H2O)2·(H2O)4 (CPO‐31) contain one‐dimensional inorganic SBUs that differ in how the half‐ and fully deprotonated ligands are connected to and arranged around them. Only the carboxylic acid groups of the organic linker are deprotonated in CPO‐29, while CPO‐30 and CPO‐31 contain both 2,5‐dihydroxyterephthalate (H2dhtp2–) linkers and fully deprotonated 2,5‐dioxidoterephthalate (dhtp4–) linkers. All three compounds contain large volumes filled with solvent, but we were able to demonstrate permanence of porosity only for CPO‐30. Variable temperature powder X‐ray diffraction reveals that CPO‐29 and CPO‐31 undergo discontinuous phase transitions upon heating, and the flexibility of the framework structure indicated by these might be the reason for the inability to access the pore volume. Desolvated CPO‐30 and CPO‐31 are polymorphs, whose network structures differ in whether the H2dhtp2– and dhtp4– linkers are located in cis or trans arrangement around the inorganic SBU.
Highlights
There is significant research interest on metal-organic frameworks (MOFs) due to their immense potential in areas of practical importance like gas sorption and separation, sensor systems and catalysis.[1]
Three different metal-organic frameworks were synthesized from yttrium nitrate and 2,5-dihydroxyterephthalic acid
We have presented three metal-organic frameworks based on yttrium and 2,5-dihydroxyterephthalic acid
Summary
There is significant research interest on metal-organic frameworks (MOFs) due to their immense potential in areas of practical importance like gas sorption and separation, sensor systems and catalysis.[1]. The additional coordinated solvent molecule results in a different utilization of coordination modes of the organic linker in CPO-31 than in CPO-30 because of the reduced number of bonding interactions needed to complete the coordination sphere around the yttrium atom (Figure 6 and animations in the Supporting Information). The first phase which is exclusively present below 100 °C in the powder patterns reflects the initial structure while it loses the non-coordinated solvent molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift für anorganische und allgemeine Chemie
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.