Abstract

Abstract Forman, K. A., and Warren, J. D. 2010. Variability in the density and sound-speed of coastal zooplankton and nekton. – ICES Journal of Marine Science, 67: 10–18. Acoustic sampling techniques provide an advantage over traditional net-sampling by increasing scientist ability to survey a large area in a relatively short period, as well as providing higher-resolution data in the vertical and horizontal dimensions. To convert acoustic data into measures of biological organisms, physics-based scattering models are often used. Such models use several parameters to predict the amount of sound scattered by a fluid-like or weakly scattering animal. Two important input parameters are the density (g) and sound-speed (h) contrasts of the animal and the surrounding seawater. The density and sound-speed contrasts were measured for coastal zooplankton and nekton species including shrimps (Palaemonetes pugio and Crangon septemspinosa), fish (Fundulus majalis and Fundulus heteroclitus), and polychaetes (Nereis succinea and Glycera americana) along with multiple physiological and environmental variables. Factors such as animal size, feeding status, fecundity, gender, and maturity caused variations in g. The variations in g observed for these animals could lead to large differences (or uncertainties) in abundance estimates based on acoustic scattering models and field-collected backscatter data. It may be important to use a range of values for g and h in the acoustic scattering models used to convert acoustic data into estimates of the abundance of marine organisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.