Abstract
Export fluxes of phosphorus (P) by sinking particles are important in studying ocean biogeochemical dynamics, whereas their composition and temporal variability are still inadequately understood in the global oceans, including the northern South China Sea (NSCS). A time-series study of particle fluxes was conducted at a mooring station adjacent to the Xisha Trough in the NSCS from September 2012 to September 2014, with sinking particles collected every two weeks by two sediment traps deployed at 500m and 1500m depths. Five operationally defined particulate P classes of sinking particles including loosely-bound P, Fe-bound P, CaCO3-bound P, detrital apatite P, and refractory organic P were quantified by a sequential extraction method (SEDEX). Our results revealed substantial variability in sinking particulate P composition at the Xisha over two years of samplings. Particulate inorganic P was largely contributed from Fe-bound P in the upper trap, but detrital P in the lower trap. Particulate organic P, including exchangeable organic P, CaCO3-bound organic P, and refractory organic P, contributed up to 50–55% of total sinking particulate P. Increase of CaCO3-bound P in the upper trap during 2014 could be related to a strong El Niño event with enhanced CaCO3 deposition. We also found sediment resuspension responsible for the unusual high particles fluxes at the lower trap based on analyses of a two-component mixing model. There was on average a total mass flux of 78±50mgm−2 d−1 at the upper trap during the study period. A significant correlation between integrated primary productivity in the region and particle fluxes at 500m of the station suggested the important role of biological production in controlling the concentration, composition, and export fluxes of sinking particulate P in the NSCS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Deep Sea Research Part I: Oceanographic Research Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.