Abstract

Little information regarding viral progeny production (burst size) and host mortality (viral virulence) is currently available for environmentally relevant phages. This is partially due to the difficulty in accurately measuring these infection properties with existing methods. Here, we set up a simple system for determining viral virulence and burst size at the single-cell level following flow cytometric separation of infected cells. We applied this assay to two distinct cyanomyoviruses, Syn9 and S-TIM5, during infection of two marine Synechococcus strains each. We found that virulence ranged from 44%-82%, differing for the same phage on different hosts. Average burst sizes ranged from 21-43 infective viruses/cell, and differed with host for Syn9, whereas the burst size of S-TIM5 was similar for both hosts. In addition, virulence and burst sizes were different for the two phages when infecting their common host. Furthermore, wide-ranging cell-to-cell variability was found for single-cell burst sizes in each of the four interactions, ranging from 2 to over 100 infective viruses/cell. This variability, discerned at both the population and single-cell levels under controlled laboratory conditions, is likely to be much more complex in natural environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call