Abstract

Transpiration is fundamental to the understanding of the ecophysiology of planted forests in arid ecosystems, and it is one of the most uncertain components in the ecosystem water balance. The objective of this study was to quantify differences in whole-tree transpiration estimates obtained with a heat ratio probe in a secondary Qinghai spruce (Picea crassifolia) forest. To do this, we analyzed the sap flux density values obtained with sensors installed in (1) holes drilled in the preceding growing season (treatment) and (2) holes drilled in the current year (control). The study was conducted in a catchment in the Qilian Mountains of western China. The results showed that an incomplete diameter at breast height (DBH) range contributed to 28.5% of the overestimation of the sapwood area when the DBH > 10 cm and 22.6% of the underestimation of the sapwood area when the DBH < 5 cm. At daily scales, there were significant differences in both the quantity and magnitude of the sap flux density between the treatment and control groups. Furthermore, a linear regression function (R2 = 0.96, p < 0.001), which was almost parallel to the 1:1 reference line, was obtained for the sap flux density correction for the treatment group, and the daily sap flux density and whole-tree transpiration were underestimated by 36.8 and 37.5%, respectively, at the half-hour scale. This study illustrates uncertainties and a correction function for sap flow estimations in young Qinghai spruce trees when using heat ratio sensors with minimal damage over multiple growing seasons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call