Abstract
The purpose of this study was to examine the biological variability of follicular fluid (FF) high density lipoprotein (HDL) particle components measured in ipsilateral ovarian follicles. We collected FF from two ipsilateral follicles among six women undergoing in vitro fertilization (IVF). We measured concentrations of 19 FF HDL particle components, including HDL cholesterol, free cholesterol, four cholesteryl esters, phospholipids, triglycerides, paraoxonase and arylesterase activities, apolipoproteins A-1 and A-2 (ApoA-1 and ApoA-2), and seven lipophilic micronutrients, by automated analysis and with high-performance liquid chromatography. We assessed biological variability using two-stage nested analysis of variance and compared values with those previously published for contralateral follicles. For most FF HDL analytes, there was little variability between follicles relative to the variability between women (i.e., %σ(2) F:%σ(2) B <0.5). Intraclass correlation coefficients were >0.80 for HDL cholesterol (0.82), phospholipids (0.89), paraoxonase (0.96), and arylesterase (0.91) activities, ApoA-1 (0.89), and ApoA-2 (0.90), and single specimen collections were required to estimate the subject-specific mean, demonstrating sufficient reliability for use as biomarkers of the follicular microenvironment in epidemiologic and clinical studies. These preliminary results raise the possibility for tighter regulation of HDL in follicles within the same ovary vs. between ovaries. Thus, collection of a single FF specimen may be sufficient to estimate HDL particle components concentrations within a single ovary. However, our results should be interpreted with caution as the analysis was based on a small sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.