Abstract
Current chemical transport models generally use a constant secondary organic aerosol (SOA) yield to represent SOA formation from aromatic compounds under low NOx conditions. However, a wide range of SOA yields (10 to 42%) from m-xylene under low NOx conditions is observed in this study. The chamber HO2/RO2 ratio is identified as a key factor explaining SOA yield variability: higher SOA yields are observed for runs with a higher HO2/RO2 ratio. The RO2 + RO2 pathway, which can be increasingly significant under low NOx and HO2/RO2 conditions, shows a lower SOA-forming potential compared to the RO2 + HO2 pathway. While the traditional low-NOx chamber experiments are commonly used to represent the RO2 + HO2 pathway, this study finds that the impacts of the RO2 + RO2 pathway cannot be ignored under certain conditions. We provide guidance on how to best control for these two pathways in conducting chamber experiments to best obtain SOA yield curves and quantify the contributions from each pathway. On the global scale, the chemical transport model GEOS-Chem is used to identify regions characterized by lower surface HO2/RO2 ratios, suggesting that the RO2 + RO2 pathway is more likely to prove significant to overall SOA yields in those regions. Current models generally do not consider the RO2 + RO2 impacts on aromatic SOA formation, but preliminary sensitivity tests with updated SOA yield parameters based on such a pathway suggest that without this consideration, some types of SOA may be overestimated in regions with lower HO2/RO2 ratios.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.