Abstract

To optimize the use of corn grain in diets for laying hens, differences in amino acid (AA) digestibility and metabolizable energy among different corn samples should be considered in feed formulation. The present study investigated the variability of AA digestibility and AMEn concentration of 20 corn samples in cecectomized laying hens. Corn grains were characterized based on their physical properties (thousand seed weight, test weight, grain density, and extract viscoelasticity), chemical composition (proximate nutrients, AA, minerals, and inositol phosphates), gross energy concentration, and in vitro solubility of nitrogen to study any relationship with AA digestibility or AMEn. The animal study comprised 4 Latin squares (6 × 6) distributed between 2 subsequent runs. Cecectomized LSL-Classic hens were individually housed in metabolism cages and fed either a basal diet containing 500 g/kg cornstarch or one of 20 corn diets, each replacing the cornstarch with one corn batch, for 8 days. During the last 4 d, feed intake was recorded and excreta were collected quantitatively. A linear regression approach was used to calculate AA digestibility of the corn. The digestibility of all AA differed significantly between the 20 corn batches, including Lys (digestibility range 64 to 85%), Met (86 to 94%), Thr (72 to 89%), and Trp (21 to 88%). The AMEn of the corn batches ranged between 15.7 and 17.1 MJ/kg DM. However, consistent correlations between AA digestibility or AMEn and the physical and chemical characteristics of the grains were not detected. Equations to predict AA digestibility or AMEn based on the grain's physical and chemical characteristics were calculated by multiple linear regressions. The explanatory power (adjusted R2;) of prediction equations was below 0.6 for the majority of AA and AMEn, and, thus, was not sufficiently precise for practical use. Possible explanations for the variation in AA digestibility and AMEn beyond the determined characteristics are discussed. In conclusion, AA digestibility and AMEn of corn grain is high in laying hens, but varies among different corn samples, with physical and chemical characteristics not suitable for explaining these variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call