Abstract
We propose an enhancement to the parametric-decomposition method for calculating approximate steady-state performance measures of open queueing networks with non-Poisson arrival processes and nonexponential service-time distributions. Instead of using a variability parameter ca2 for each arrival process, we suggest using a variability function ca2ρ, 0 < ρ < 1, for each arrival process i.e, the variability parameter should be regarded as a function of the traffic intensity ρ of a queue to which the arrival process might go. Variability functions provide a convenient representation of different levels of variability in different time scales for arrival processes that are not nearly renewal processes. Variability functions enable the approximations to account for long-range effects in queueing networks that cannot be addressed by variability parameters. For example, the variability functions provide a way to address the heavy-traffic bottleneck phenomenon, in which exceptional variability (either high or low) in the input has little impact in a series of queues with low-to-moderate traffic intensities, and then has a big impact when it reaches a later queue with a relatively high traffic intensity. The variability functions also enable the approximations to characterize irregular periodic deterministic external arrival processes in a reasonable way; i.e., if there are no batches, then ca2ρ should be 0 for ρ near 0 or 1, but ca2ρ can assume arbitrarily large values for appropriate intermediate ρ. We present a full network algorithm with variability functions, showing that the idea is implementable. We also show how simulations of single queues can be effectively exploited to determine variability functions for difficult external arrival processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.