Abstract

Variability-sensitive verification pursues effective analysis of the exponentially many variants of a program family. Several variability-aware techniques have been proposed, but researchers still lack examples of concrete bugs induced by variability, occurring in real large-scale systems. A collection of real world bugs is needed to evaluate tool implementations of variability-sensitive analyses by testing them on real bugs. We present a qualitative study of 98 diverse variability bugs (i.e., bugs that occur in some variants and not in others) collected from bug-fixing commits in the Linux, Apache, BusyBox, and Marlin repositories. We analyze each of the bugs, and record the results in a database. For each bug, we create a self-contained simplified version and a simplified patch, in order to help researchers who are not experts on these subject studies to understand them, so that they can use these bugs for evaluation of their tools. In addition, we provide single-function versions of the bugs, which are useful for evaluating intra-procedural analyses. A web-based user interface for the database allows to conveniently browse and visualize the collection of bugs. Our study provides insights into the nature and occurrence of variability bugs in four highly-configurable systems implemented in C/C++, and shows in what ways variability hinders comprehension and the uncovering of software bugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call