Abstract

Silicon offers an attractive material platform for hardware realization of quantum computing. In this study, a microscopic stochastic simulation method is developed to model the effect of random interface charge traps in silicon metal-oxide-semiconductor (MOS) quantum gates. The statistical results show that by using a fast two-qubit gate in isotopically purified silicon, the two-qubit silicon-based quantum gates have the fidelity >98% with a probability of 75% for the state-of-the-art MOS interface quality. By using a composite gate pulse, the fidelity can be further improved to >99.5% with the 75% probability. The variations between the quantum gate devices, however, are largely due to the small number of traps per device. The results highlight the importance of variability consideration due to random charge traps and potential to improve fidelity in silicon-based quantum computing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call