Abstract
Climate change is predicted to be a major threat to river ecosystems in the 21st century, but long-term records of water temperature in streams and rivers are rare. This study uses long-term water temperature series from the Elbe and the Danube River Basin to quantify the variability, magnitude, and extent of temperature alterations at different time scales. The observed patterns in monthly and daily water temperatures have been successfully described through statistical models based on air temperature, river discharge and the North Atlantic Oscillation Index. These models reveal that air temperature variability describes more than 80 % of the total water-temperature variability, linking anticipated changes in water temperature mainly to those in air temperature. The North Atlantic Oscillation effect deteriorates with decreasing latitude, while the discharge effect becomes more important and increases with the increase in discharge amount. The detected water temperature alterations include a phase shift in spring warming of almost 2 weeks, an increase in the number of days with temperatures above 25 °C and an increase in the duration of summer heat stress. These findings underline a significant risk for fundamental changes in river ecosystems, specifically in disruption of established patterns in food-web synchrony, and may lead to significant distortions in community structure and composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.