Abstract
In carbon capture, utilization and storage (CCUS), a thorough understanding of thermophysical behaviour of the candidate fluid is an essential requirement for accurate design and optimised operation of the processes. In this communication, vapour liquid equilibrium data (VLE) of the binary mixtures of CO + CO2 are presented. A static-analytic method was used to obtain VLE data at six isotherms (253.15, 261.45, 273.00, 283.05, 293.05, 298.15) K and pressures up to 12 MPa. The standard uncertainties of the measured temperature and pressure were estimated to be 0.1 K, 0.005 MPa, respectively. Also, the standard uncertainty of the measured molar composition of each phase is found to be less than 1.1%. The measured experimental results are then compared with some predictive thermodynamic equations of state (EoS) (i.e. the Peng Robinson (PR-78) with classical or Wong-Sandler mixing rules, the GERG, and EoS-CG without and with a specific departure function) and available data in the literature. A sound agreement is observed between the results of this work and some of the VLE data published in the open literature. Furthermore, for all isotherms, the best agreement is observed between experimental results and predicted VLE data from the PR-EoS with the Wong-Sandler mixing rules and the EoS-CG with a specific departure function. However, a significant deviation is found between measured results and VLE data calculated using the GERG-EoS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.