Abstract

2-Methyltetrahydrofuran (MTHF) is a desirable biomass-based platform chemical with excellent potential as an ideal biofuel, green solvent, and raw material for synthesizing downstream chemicals. In this work, a series of copper nanoparticles encapsulated on SiO2 were prepared by the wet impregnation method and evaluated as efficient non-noble metal catalysts for the vapour-phase hydrogenation of γ-valerolactone (GVL) to MTHF in a fixed-bed reactor under mild reaction conditions. The obtained catalyst properties were determined by XRD, FE-SEM, TEM, UV-DRS, TPR, NH3-TPD, N2O decomposition and pore size distribution measurements. Meanwhile, the parameters/variables tuning their catalytic performance (activity, conversion, selectivity and stability) were examined. Various Cu loadings featured on the SiO2 support are essential for tuning the catalytic activity. Among the catalysts tested, a 5 wt% Cu/SiO2 catalyst showed a 97.2% MTHF selectivity with 71.9% GVL conversion, and showed a stability for 33 h time-on-stream, achieved at 260 °C and atmospheric pressure conditions. It was found that a huge dispersion of Cu metal in support, hydrogen activation ability, abundant acidic sites and surface area are all beneficial for improved MTHF selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.