Abstract

In order to determine the vapour liquid equilibrium of a pure fluid, the liquid and the vapour branch of the isotherms in the chemical potential μ vs pressure p-diagram, are constructed explicitly. The liquid branch is obtained by molecular dynamics simulations in an NpT-ensemble into which test particles are inserted to calculate the chemical potential. The vapour branch is obtained at lower temperatures by using the second virial coefficient, at higher temperatures it is determined again by simulations. As an example the two-centre Lennard-Jones fluid with elongation L = 0·505 is considered at temperatures ranging from 0·69 to 0·92 of the estimated critical temperature. As expected, the inaccuracies of the liquid chemical potential increase with decreasing temperature as a consequence of the increasing saturated density. The uncertainties in μ/RT range from 0·02 at the highest to 0·10 at the lowest temperature which creates an uncertainty in the reduced vapour pressure Pσ3/ϵ of the order of 0·002. Withi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.