Abstract
Abstract New Zealand and many countries gained heightened awareness of indoor air quality (IAQ) issues, and increased investment, according to the World Health Organization (WHO) guidelines, to improve their IAQ and reduce air pollution in commercial and residential buildings. Additionally, some countries have introduced new standards for indoor environments, such as the New Zealand “healthy homes” standard. At the same time, COVID-19 pandemic forced many people to spend much more time in indoor spaces, due to stay-at-home, or lockdown orders by governments. This increased attention on other aspects of indoor environmental quality, such as occupants’ satisfaction with thermal comfort parameters, presents an additional parameter for research and in the development of standards. From a medical perspectives, infectious respiratory diseases, such as influenza or COVID-19, are transmitted by airborne droplets. In this work, we assess a Polyester Filter and UV light (PFUV) dehumidifier device performance in an office with two occupants (one uninfected and the other one infected with a disease with airborne transmission using computational fluid dynamics (CFD) approach. Two positions for locating the PFUV dehumidifier in an office with a scenario in which one person is exhaling infected air and the other occupant must inhale and exhale from the shared air. The CFD model illustrated the best position of the device to distribute the air velocity contours. Further, based on the CFD model which was validated via the IAQ and comfort kit (Testo 400) thermal comfort analysis showed that the room is slightly cold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.