Abstract

We investigate the stability of a Luttinger liquid, upon suddenly coupling it to a dissipative environment. Within the Lindblad equation, the environment couples to local currents and heats the quantum liquid up to infinite temperatures. The single particle density matrix reveals the fractionalization of fermionic excitations in the spatial correlations by retaining the initial noninteger power law exponents, accompanied by an exponential decay in time with an interaction dependent rate. The spectrum of the time evolved density matrix is gapped, which collapses gradually as -ln(t). The von Neumann entropy crosses over from the early time -tln(t) behavior to ln(t) growth for late times. The early time dynamics is captured numerically by performing simulations on spinless interacting fermions, using several numerically exact methods. Our results could be tested experimentally in bosonic Luttinger liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.