Abstract

The study of the gasification of a droplet via vaporization, which involves heat, mass and momentum transfer processes in gas and liquid phases, and their coupling at the droplet interface, is necessary for better understanding and modeling of complex spray and mixture formation issues. A detailed description of the vaporization of an isolated droplet has been realized in this experimental study aimed at investigating the impact of the water vapor contained in the surrounding gas on the evaporation of an ethanol droplet. The experimental set-up consists of a heated chamber with a cross quartz fibers configuration as droplet support. An ethanol droplet is located at the intersection of the cross with a controlled initial diameter (300–550μm). Ambient temperature is varied from 350 to 850 K. The real impact of the water concentration on the vaporization rate of an ethanol droplet in a large range of temperature is examined, showing that the vaporization of an ethanol droplet is accompanied by the simultaneous condensation of water vapour on the droplet surface and thus the temporal evolution of the droplet squared diameter exhibits an unsteady behaviour. The histories of the instantaneous vaporisation rates calculated from the d2(t) curves confirms this non-stationary aspect of the phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.