Abstract

The quasi-steady vaporization and combustion of multiple-droplet arrays is studied numerically. Utilizing the Shvab–Zeldovich formulation, a transformation of the governing equations to a three-dimensional Laplace’s equation is performed, and the solution to Laplace’s equation is obtained numerically to find the effects of droplet interactions in symmetric, multiple-droplet arrays. Vaporization rates, flame surface shapes, and flame locations are found for different droplet array configurations and fuels. The number of droplets, the droplet arrangement within the arrays, and the droplet spacing within the arrays are varied to determine the effects of these parameters. Computations are performed for uniformly spaced three-dimensional arrays of up to 216 droplets, with center-to-center spacing ranging from 3 to 25 droplet radii. As a result of the droplet interactions, the number of droplets and relative droplet spacing significantly affect the vaporization rate of individual droplets within the array, and consequently the flame shape and location. For small droplet spacing, the individual droplet vaporization rate decreases below that obtained for an isolated droplet by several orders of magnitude. A similarity parameter which correlates vaporization rates with array size and spacing is identified. Individual droplet flames, internal group combustion, and external group combustion can be observed depending on the droplet geometry and boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call