Abstract

The vaporisation rates of volatile fission product compounds are critical parameters for modelling aerosol formation following a severe nuclear accident. The vaporisation of CsOH and CsI was studied in a pure steam atmosphere at ambient pressure (85– 89 kPa ) by increasing the temperature of the flow furnace up to 1000°C. For this purpose, samples were doped with a small amount of radioactive tracer. The vaporisation rate was then determined from the decrease in sample activity with time, using a germanium gamma detector placed outside the furnace. Calculated vaporisation rates obtained by solving complete velocity, temperature and vapour concentration profiles surrounding the sample with FLUENT CFD-software, were in reasonable agreement with the data. A simple engineering calculation agrees almost perfectly with the FLUENT results, if a constant value, Sh≈8, for the Sherwood number is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.