Abstract

The energy density of next-generation lithium-ion batteries (LIBs) can be considerably improved by replacing traditional graphite anodes with silicon nanowires (Si NWs). However, the synthesis of Si NWs is restricted due to the requirement for expensive and heavy metal catalysts for growth. Herein, for the first time, we successfully demonstrate the growth of Si NWs using magnesium (Mg) as a catalyst material, within a wet-chemical glassware-based setup. Analysis of the Si NWs revealed the presence of Mg2Si at the tips of the Si NWs, indicating that growth proceeds via a vapor–solid-solid (VSS) mechanism. Si NWs were also grown from Mg foil, Mg powder, and from thermally evaporated layers on stainless steel substrates, demonstrating the versatility of Mg as a catalyst material. Mg as a catalyst facilitated high NW mass loadings (up to 0.8 mg/cm2) on planar stainless steel current collectors, coupled with tight diameter control (average diameter of ∼20 nm). Within LIB half-cell testing, they demonstrated high initial coulombic efficiencies (up to ∼81 %) and high gravimetric (up to 2792 mAh/g) and areal capacities (up to 1.58 mAh/cm2). The approach highlights Mg as a catalyst for the development of higher mass loading and binder-free Si NWs anodes for LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.