Abstract
Thermodynamic functions of the gaseous species, thermodynamic functions of the condensed phase, and an oxygen-potential model have been combined to calculate the vapor pressures and vapor compositions in equilibrium with condensed-phase UO 2-x for 1500⩽T⩽6000 K and 0⩽ x ⩽0.5. A method for extending the oxygen-potential model of Blackburn to the liquid region has been derived and evaluated. Results of these calculations show that the oxygen-to-uranium ratio of the vapor is larger than that of the condensed phase with which it is in equilibrium for most of the ranges of T and x of interest. Near 6000 K the vapor is very oxygen-rich so that the composition of the condensed phase would be changed considerably by even a few percent vaporization. In general, the vapor in equilibrium with UO 2-x is poorly approximated at UO 2(g); the species U, UO, UO 3, O 2, and O each have higher partial pressures than UO 2 for some conditions. The calculated total pressures at high temperatures are in good agreement with those recommended by the International Working Group on Fast Reactors (IWGFR).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.