Abstract

Single-crystal tungsten nanobelts with thicknesses from tens to hundreds of nanometers, widths of several micrometers and lengths of tens of micrometers were synthesized using chemical vapor deposition. Surface energy minimization was believed to have played a crucial role in the growth of the synthesized nanobelts enclosed by the low-energy {110} crystal planes of body-centered-cubic structure. The anisotropic growth of the crystallographically equivalent {110} crystal planes could be attributable to the asymmetric concentration distribution of the tungsten atom vapor around the nanobelts during the growth process. The elastic moduli of the synthesized tungsten nanobelts with thicknesses ranging from 65 to 306 nm were accurately measured using a newly developed thermal vibration method. The measured modulus values of the tungsten nanobelts were thickness-dependent. After eliminating the effect of surface oxidization using a core–shell model, the elastic modulus of tungsten nanobelts became constant, which is close to that of the bulk tungsten value of 410 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.